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ABSTRACT 

Some variants of Kazhdan's property (T) for discrete groups are presented. It 
is shown that some groups (e.g. SLn (Q), n _->_ 3) which do not have property (T) 
still have some of these weaker properties. Applications to cohomology and 
infinitesimal rigidity for certain actions on manifolds are derived. 

In this paper we discuss some variants of Kazhdan's property (T) for 
discrete groups. There are four sections in this paper. The first presents a 
discussion of some of the variants of property Twith which we shall be dealing. 
The second contains a proof that lattices in certain locally compact groups 
which are products of algebraic groups over local fields, and the set of rational 
points of a suitable group over a global field have one of these basic variants of 
Kazhdan's property even though they do not necessarily possess the latter 
property. Section three contains some applications to group cohomology. The 
final section contains an application to infinitesimal rigidity for certain actions 
on manifolds, a result which is new even for groups with property T. 

1. Variants of Kazhdan's property 

Let G be a locally compact group, Rep(G) the equivalence classes of unitary 

representations, G ̂  the unitary dual, i.e., the set of equivalence classes of 
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irreducible representations in Rep(G). G ̂  is equipped with the standard 
unitary dual topology. I E G ̂  denotes the trivial representation. We recall that 
G is said to have Kazhdan's property (T) i f / i s  an isolated point in G ̂ . 

DEFINITION 1.1. If R C G ̂ , we say that G has property (T; R) if I is 
isolated in R U {I} with the relative topology. 

Thus, Kazhdan's property is property (T; G^). Kazhdan proved that any 
simple algebraic group of split rank at least 2 over a local field has this 

property, as does any lattice in such a group. There are some natural and 
interesting examples of groups not satisfying (T; G ̂ ) but satisfying (T; R) for 
some natural subclasses R. Namely, let F be a discrete group, and F the set of 
p E F  ^ which factor through a finite quotient of F. The condition that F 
satisfies (T; F) turns out to be equivalent to some combinatorial and geometric 
properties of F. Before stating this, we first present some notation. 

Let X = (1/, E) be a finite connected graph with a set of vertices Vand edges 
E. Let d denote the canonical distance function on X and Ax (or simply A when 
there is no confusion) be the map A : L2(X)--,'L2(X) given by 

(af)(x) = (deg(x))-' 2 (f(x) -f(y)), 
yEV 

where deg(x)-- cardIy I dtx, y)-- 1}. 
Then A is a self-adjoint operator with non-negative eigenvalues. 2o = 0 

is always an eigenvalue with the constants as eigenfunctions, and since X is 
connected, it is an eigenvalue of  multiplicity 1. Let 2~(X) denote the next 
smallest eigenvalue. The graph X will be called a c-expander if for every 

subset A c Vfor  which IAI _-< 11/I/2, we have lOal >=clAI, where 0.4 = 
{ y ~  v ld(y,a) = 1}. 

Now let M be a compact Riemannian manifold, A the Laplace-Beltrami 
operator, and 2~(M) its smallest non-zero eigenvalue. The isoperimetric 

invariant of M is defined to be h (M) -- inf {area(H)/min(vol(A ), vol(B)) [H is 
a dosed hypersufface in M which divides M into two connected components A 

and B }. We can now state: 

PROPOSITION 1.2. Let F be a finitely generated group with a finite generat- 
ing set S. Let ~ be a family of  finite index normal subgroups ofF. Then the 
following conditions are equivalent: 

(i) F has property (T; R(~)) ,  where R ( ~ )  is the set of  all irreducible 
representations o f  F that factor through a quotient with kernel in ~ .  
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(ii) There is a constant c2 > 0 such that all Cayley graphs X(F/N, S), with 
N E 57, are c2-expanders. 

(iii) There is a constant c3 > 0 such that 2~(X(I'/N, S)) >-_ c3for every N ~ 5". 
I f  in addition F is the fundamental group of  a compact Riemannian manifold 

M, and for every N E .9" we denote by MN the corresponding finite sheeted 
covering, we then also have the equivalence with the following properties : 

(iv) There is c4 > 0 such that h(M•) > c4 for every N E ,5?. 
(v) There is c5 > 0 such that 2~(MN) >--_ csfor every N E 5?. 

The proof of this proposition is not difficult and is contained essentially in 
[BI], [B2], [AM], [A1]. One can also work out the connections between the 
various constants. 

A non-trivial example is the group F = SL(2, Z) where 5e is the set of 
congruence subgroups of F; i.e., 

ffi { r (m)  ffi ker(SL(2, Z ) - -  SL(2,Z/mZ))}. 

By a theorem of Selberg, ;t~(H2fF(m)) >_- 3/16, where H 2 is the upper half plane, 
and hence F has property (T;R(Se)). (We remark that the conclusions of 
Proposition 1.2 hold for SL(2, Z) and ~ even though SL(2, Z) is not co- 
compact. See [B2].) On the other hand it is not difficult to see that SL(2, Z) 
does not have property (T; R(~r)), where ~r denotes the set of all normal 
subgroups of finite index. 

Another interesting example is F = SL(2, Z[ 1/p ]) where p is any prime. This 
group has property (T;R(~ff)), but does not have property T. The latter 
assertion follows immediately from the fact that F is a dense subgroup of 
SL(2, R). To s¢¢ the first assertion, recall that F has an affirmative solution to 
the congruence subgroup problem [Se]. Thus, every finite quotient of F is a 
congruence quotient of SL(2, Z). Selberg's theorem and Proposition 1.2 now 
apply to show that F has property (T;R(~r)). In this example F is an 
irreducible lattice in SL(2, R) X SL(2, Qp). An example of a similar nature is 
F = SL(2, ¢) where ¢ is the ring of integers in a quadratic real number field. 
See [Sa]. Here F is a lattice in SL(2, R) X SL(2, R). These two examples also 
have property (T; FD), where FD denotes the space of finite dimensional 
unitary representations. In the examples this follows simply from the fact that 
every finite dimensional unitary representation of these groups has finite 
image. It would be interesting to determine whether or not properties (T; FD) 
and (T; R(~r)) are equivalent in general, say for finitely generated residually 
finite groups. 
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We believe that any irreducible lattice in a non-trivial product (i.e., at least 
two non-compact factors) of semisimple groups (over any local fields) has 
property (T; R(~r)). A main result of the next section proves this under the 
hypothesis that one of the factors of the product has property (T). In 
particular, for real groups, the only remaining cases are products of groups of 
the form SO( 1, n) and SU(1, n). This conjecture in fact follows from two other 
well known conjectures. First, we recall that Serre has conjectured that the 
congruence subgroup property holds for any irreducible arithmetic lattice in a 
non-trivial product of semisimple groups. Second, it is a general conjecture 
that if G is any semisimple group and F is any arithmetic lattice, then there is 
c > 0 such that ;t~(MN) >___ c for every N E ~ where ~ is the set of congruence 
subgroups o f f  and r is viewed as the fundamental group of the corresponding 
locally symmetric space. Thus, our conjecture would follow from the validity 
of these two conjectures (using Margulis arithmeticity theorem as well.) As to 
the second of these conjectures, as in the previous paragraph, the problemis 
reduced to the case of SO(l, n), SU(1, n), and products of these groups. For 
SO(I, n), it has recently been verified in [EGM] and [LPS], and for SU(1, n) in 
[Lil. 

Property (T, R(~) )  also arises naturally in studying fundamental groups of 
spaces on which a scmisimple Lie group can act. See [Z2]. 

Another natural class of unitary representations are those whose matrix 
coefficients vanish at oo (or "mixing" representations.) We denote the elements 

of G ^ having this property by R~o. In the next section we deduce that the 
irreducible lattices wc are considering will have property (T, R®) even though 

they may not have property T. The arguments will apply to give a new type of 

result for groups over global fields. For example, we show in the next section 

that SL(n, Q) has property (T, R®), even though it is not finitely generated and 
hence does not have property T. This result holds for other Q-groups, and via 

thc operation of restriction of scalars (sec [Z I ]), similar results can be obtained 

for groups defined over algebraic number fields. 

2. Irreducible lattices in a product of groups 

To ease our notation, by a semisimple group we shall mean a group of the 
form IIH~, where the product is finite, and each Hi is the group ofk~-points of a 
semisimple algebraic ki-group, where ki is a local field. In this section we show 
that irreducible lattices in some such products, even without property T, will 
have a relative version of property T. This is sufficient to deduce, for example, 
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that F has a finite abelianization, and in certain cases that F is finitely 

generated. We shall see other applications as well. We also obtain results for 
lattices in semisimple groups over the adeles. 

DEFINITION 2.1. Suppose h : G --- H is a homomorphism of  locally com- 

pact groups. If n ~ Rep(G), we say that n degenerates through h (or through H) 

if for some k > 1, some non-trivial (i.e., not a multiple o f / )  subrepresentation 
of  Sk(rt) (the k-fold symmetric power of  n) factors through h. 

THEOREM 2.2. Suppose for i = 1, 2, G~ is a locally compact separable 

group, and that G~ is Kazhdan. Let F c G = GI × G2 be a lattice which.projects 
densely onto Gm, and let p, : F - -  G~ be the projection. Let 

R~ = { ~ ~ F  ^ [ ~t does not degenerate through p~}. 

Then F has property (T; R1). 

For the proof we need the following lemma. 

LEMMA 2.3. Suppose F is as in the statement o f  Theorem 2.2 and suppose 
that F acts ergodically in a finite measure preserving way on a space X.  Assume 
that the representation o f  F on L2(X)0 ( = C ± c L2(X)) weakly contains I. Then 

there is a finite measure preserving G~-action on a space Y and a measure 
preserving F-map X--'- Y. 

PROOF. Let Z be the G-space induced from X, i.e., Z = (X × G)/F. Let 7t 

be the representation of F on L2(X)0, and tr the representation of  G induced 
from n. Then we have a natural identification of tr as a subrepresentation of  

L2(Z)o. Since rt weakly contains I, so does tr. Since G2 is Kazhdan, there are G2 
invariant vectors in L2(Z)o, i.e., G2 does not act ergodically on Z. (We remark 

that G does act ergodically on Z, since the F action on Xis  ergodic.) Let E be 

the space of  G2-ergodic components of  the G2 action on Z.  Then G acts on E 

and we have a G-map Z ---E, with G2 acting trivially on E.  We have a natural 

F-embedding X ~ Z. The image is of  measure 0, but its saturation under G is 
of  full measure. The image carries a finite F-invariant measure, and hence E 

carries a finite F-invariant measure as well. Since we may assume (by a result of  

Varadarajan; see [Z1, 2.1.19]) that E is a compact metric Gi-space, this 

F-invariant measure will be G~ invariant as well, since p~(F) is dense in G~. 

Thus X ~ E is the required map. 

REMARK 2.4. The proof actually shows a more precise statement which we 

shall need later. We recall that if ~t is a unitary representation of  a group G, 

K c G is a subset, e > 0, and v is a unit vector in the representation space, then 
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v is called (e, K)-invariant if II n(g)v - v II < e for all g ~K.  If G is generated 
by K, then Kazhdan's property is equivalent to the existence of some e > 0 
such that the existence of(e, K)-invariant vectors for ~t implies that it has non- 
trivial invariant vectors. The proofofLemma 2.3 combined with the argument 
of [Z1, 9.1.1] yields the following assertion, assuming the hypotheses of 
Lemma 2.3. There is a finite set S c F, and some e > 0 such that any ergodic 
F-space X with invariant probability measure and some fEL2(X)o which is 
(e, S)-invariant satisfies the conclusion of Lemma 2.3. If F is finitely gener- 
ated, then for any finite generating set S we may find such an e. 

PROOF OF THEOREM 2.2. Let R0 be the subset of finite dimensional 
representations in R1, and suppose that I is not isolated in R0. Let rti be a 
sequence in R0 with lti --- I. Let ~t be the direct sum of the n~, and K the closure 
of the image of n in the direct product of the corresponding unitary groups. 
Thus we have a homomorphism h : F ~ K  with dense image such that the 
representation of F on  L2(K)0 weakly contains the the identity. On the other 
hand, if I is isolated in R0 but not in R~, let rc be an infinite dimensional 
irreducible representation with an (e, S)-invariant unit vector, where e and S 
are as in the remark above. Let X be the Gaussian F-space associated to this 
unitary representation [Z 1 ]. Then F acts ergodically on X and we can identify 
L2(X) naturally with Zke>_.0 Sk(rt). Thus, in either case we have an ergodic 
F-space X with finite invariant measure such that L2(X)0 contains (e, S)- 
invariant vectors and has no subrepresentations that factor through G~. 
However, if we take Y as in Lemma 2.3, we have L:(Y)o C LE(X)0 as unitary 
F-modules, which is a contradiction. 

REMARK 2.5. We have used here the following simple fact. If V c W are 
unitary F-modules, and F factors through GI, and L C W is F-invariant with 
orthogonal projection P :  W---L, then P(V) factors through G~. This follows 
easily from the remark that the representation of F on this space is (uniformly) 
continuous where F has the topology of a subgroup of G~. 

COROLLARY 2.6. (i) Let F be as in Theorem 2.2, and assume G~ is 
minimally almost periodic (i.e., has no non-trivial finite dimensional unitary 
representations.) Then F has property (T; FD), and afortiori has property 
( T; R ( ~r)). In particular, this holds for irreducible lattices in semisimple groups 
in which at least one of the factors is non-compact and Kazhdan. 

(ii) Let F be an irreducible lattice in a semisimple real Lie group in which at 
least one of  the faCtors is of  real rank > 2. Let X = G/K be the symmetric space 
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associated with G. Then there is some e > 0 such that 2~(X/A) > e for every 
finite index subgroup A c F. 

PROOF. (i) implies (ii) by Proposition 1.2. To prove (i), simply observe that 
if 7r is finite dimensional, so is St(n), and thus any subrepresentation of Sk(Tr) 
extending to G1 via p~ is trivial. 

COROLLARY 2.7. Suppose F is a discrete group with property(T; FD) (e.g., 
let F be as in Theorem 2.2.) Then 1 -~ is finite. 

PROOF. If not, the dual group of I ~ is non-discrete. 

We now consider the issue of finite generation. Unlike the case of property 
T, it is not true that property (T; FD) implies finite generation, even for 
residually finite groups. For example, let P be the set of prime numbers except 
for one prime, say p. Let ~ be the ring of P-integers, and let F = SL(n, ~). Since 
P is infinite, F is not finitely generated. It is however residually finite, since 
every element will have non-trivial image when reduced modulo pr for a 
sulficiently large r. To see property (T; FD), we observe that by the congruence 
subgroup property the profinite completion of F is the same as the p-adic 
completion of SL(n, Z). We note that in Proposition 1.2 we have (ii) implies (i) 
holds as long as S generates all finite quotients of F even if S does not generate 
F. Therefore property (T; FD) for F follows form Selberg's theorem for n -- 2, 
or property T for n > 2. 

On the other hand, consider once again the situation in Theorem 2.2. By a 
result of Wang [W], if H is a connected semisimple real Lie group, then any 
dense subgroup contains a finitely generated dense subgroup. With this 
additional condition, we can deduce finite generation. 

PROPOSITION 2.8. Assume the hypotheses of  Theorem 2.2, and that ker(pl) 
is finite. Suppose further that G~ satisfies the condition that any dense subgroup 
contains a finitely generated dense subgroup. Then F is finitely generated. 

PROOF. We can write F - - U  Fn, where each Fn is a finitely generated 
subgroup which projects densely into GI. Then the representation of F on the 
direct sum of L2(F/Fn) weakly contains I, and hence so does this represen- 
tation induced to G. It follows that G2 has a non-trivial invariant function f 
in some L2(G/FD. Since Fn is dense upon projection to GI, G2Fn is dense in G. 
It follows tha t f  is essentially constant, and hence that F~ is a lattice in G. Thus, 
F, is of finite index in F, and since F~ is finitely generated, so is F. 
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Let R® be the set of irreducible representations whose matrix coefficients 

vanish at ~ (or "mixing" representations.) 

COROLLARY 2.9. Let F be as in Theorem 2.2. Then F has property (T; R®). 

PROOF. Since n is mixing, so is Sk(lt). Thus as a, E F  goes to oo, 
Sk(rt)(a,) ~ 0 in the weak operator topology. However, we can choose a, ~ oo 
in F but a, ~ e in Gt since F projects densely into GI. Hence, no subrepresen- 

tation can factor through Gt. 

EXAMPL]~ 2.10. Let G be an algebraic Q-group such that G(R) is a simple 
non-compact Lie group with Kazhdan's property. Then G(Q) has property 
(T; R~). To see this, let ~¢ be the ring of adeles, and ~ / t h e  finite adeles. 
Then G(Q) is an irreducible lattice in G(~¢), where the latter is written as 
G(R) × G(~f). The assertion then follows from 2.9. The argument can clearly 

be made to apply to more general groups over number fields. 

3. Applications to group cohomology 

In this section we prove some vanishing theorems for certain first cohomo- 
logy groups, which are already known for groups with property T. In the case 
of semisimple groups, the first result follows from results in [BW]. However, 

our argument is much more elementary. 

THEOREM 3.1. Let F be as in Theorem 2.2, with G~ minimally almost 
periodic. I f  V is a finite dimensional unitary F-module, then H~(F; V) -- 0. 

To prove Theorem 3.1, we first make some ergodic theoretic observations of  
independent interest. By a measurably isometric action we mean one measur- 
ably conjugate to an ergodic isometric action on a compact metric space. We 
also use the notion of actions with generalized discrete spectrum (hereafter 
g.d.s.) [Z4], which we also take to be ergodic, and which is a natural generaliza- 
tion of the the notion of measurably isometric action. We shall be concerned 
with the first cohomology of F with coefficients in the collection of measurable 
functions (modulo null sets) on a measurable F-space Xwith values in a locally 
compact group L. This can be identified with the standard ergodic theoretic 
cohomology H~(X X F, L). See [Z1], for example, for a discussion of  this set. 
We recall here that i fF  has property T, Xhas a finite F-invariant measure, and 
L is an amenable group with no non-trivial compact subgroups, then 
H~(XXF,  L)ffiO [Z1, 9.1.1]. This result is extremely useful in geometric 
applications. See [Z5], for example. Here, we shall establish this type of  
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vanishing for F as in Theorem 2.2, for a restricted class of X. This will then be 

sufficient to give a proof of Theorem 3.1. 

LEMMA 3.2. Let F be as in Theorem 3.1, and let X be a F-space with g.d.s. 
Then X has no non-trivial quotient action which factors through G1. 

PROOF. If Y is such a quotient, Y has g.d.s. [Z4], and hence Y has a 
measurably isometric quotient. This is impossible. 

PROPOSITION 3.3. Let X be as in Lemma 3.2. I f  a~EZl(X × F, S~), and 
ai --" I in the sense of[Z6], then some ai is trivial in cohomology. 

PROOF. Suppose not. Let a = ( a l ,  o ~ 2 ,  . . .) -" X X F - - I I  S l, and let Kbe  the 

Mackey range [Z3]. Then K is a compact abelian group, and (possibly after 

replacing a with a cohomologous cocyde), we have o~ : X X F ~ Kwith Mackey 

dense range, and elements 2 / ~ K  ^ such that 2i o a - -  I. Form the skew product 
Z = X X~ K. Then L2(Z) D ]EOL2(X)i, where F acts on L2(X), - via translation 
and a twist by 2i ° a. It follows that L2(Z)o weakly contains I,  and hence, by 

Lemma 2.3, Z has a non-trivial quotient F-space that factors through G1. Since 

Z has g.d.s., this is impossible by Lemma 3.2. 

PROPOSITION 3.4. I f  F acts on X with g.d.s. (and F as above), then 
Hl(X X F, R) = 0 (and hence Hl(X × F, Z) = 0). 

PROOF. By results of  Moore-Schmidt [MS], it suffices to see for a fixed 
cocycle a, that 2 o a is trivial for all 2 E R  ^. If  {2 ~ R  ^ 12 o a is trivial} con- 

tains an open neighborhood of I ~ R^, we are done. If not, choose 2i ~ R ^ such 
that 2i ~ I and 2~ o a non-trivial. But 2~ --* I implies ;t~ o a --- I, contradicting 

Proposition 3.3. 

COROLLARY 3.5. Let F be as in Theorem 3.1, and let X be a F-space with 
g.d.s. Then HI(X X F, U) = O for any unipotent Lie group or finitely generated 
torsion free nilpotent group. 

PROOF OF THEOREM 3.1. We can assume we have a homomorphism 

h : F ~ H  = K Xs V (semidirect product) where V i s a  Euclidean group and K 

is a compact group, such that the image of  F in K is dense. We wish to show 

that the closure of  h(F) is compact. The map H - ,  K of  F spaces defines an 
element o fHl (K × F, II) (viewing K asan-isomt~ic F - ~  Corollary 3.5 

this cocycle is trivial in cohomology, which implies that there is a measurable 

F-invariant section K ~ H .  This in turn implies that there is a finite F- 
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invariant measure on H. This measure must  be h(F)--invariant,  and since 
h ( D -  acts properly on H,  h (F)- must  be compact. 

4. Application to infinitesimal rigidity 

I f M i s  a compact manifold and F is a discrete group acting smoothly on M, 
the action is called infinitesimally rigid if Hi(F, V(M)) = 0, where V(M) is the 
F-module of  smooth vector fields on M. For lattices in semisimple groups, a 
number  of natural actions on homogeneous spaces were shown to satisfy this 
property in [Z7]. Here we establish (much more easily) infinitesimal rigidity of  
ergodic isometric actions for a class of groups which includes all those of 
Theorem 3.1, and all those with property T. The result is new even for groups 
with property T. 

THr.OREM 4.1. Suppose F is a finitely generated group satisfying: 
(a) F has property (T, FD); and 
(b) Hi(F; V) = O for all finite dimensional unitary F-modules. 

Suppose F acts isometrically and ergodically on a compact manifold M. Then 
the F action on M is infinitesimally rigid. Furthermore, H~(F, C°(M)) = O. 

REMARK 4.2. Property T implies both (a) and (b). For F as in Theorem 
3.1, both are satisfied as well by Corollary 2.6 and Theorem 3.1. 

PROOF. Let V2(M) be the space of L 2 vector fields, v2'k(M) the (2, k)- 
Sobolev space of vector fields. I f  F acts on M, these are all F modules in a 
natural way. Let K be the isometry group of M, so that M = K/Ko for some 
closed subgroup K0, by ergodicity o f f  on M. We have a homomorphism F--- K 
defining the action on M. V2(M) is a unitary K-module, and we can write 
V2(M) ---- EOV~, where V~ C V(M), dim V~ < ~ ,  and Vi are mutually disjoint 
K- modules. Let A be the Laplace operator on V(M). Then A commutes  with K, 
and hence A(V,) c V~ for all i. Further, (I +Ak)~/2 : v2"k(M) ---. V~(M) is an 

isomorphism. Thus, if h = E*h~ ~ V2(M), where h~E V~ (and in particular 

~: II h~ 112 < oo), we have h E V(M) if  and only if • 11 Akh, II 2 < ~ for all k. 
Now suppose f :  F ~  V(M) is a l-cocycle. Then we can write f (a )  -- Yf~(a), 

where f~: F---V~ is a 1-cocycle. Thus, we can find hg E V~ such that for all 
a E F  we have f~(a)= ahg- h~. Fix a finite generating set F c F. By pro- 
perty (T; FD), there is e > 0 such that for each i we can find a~ E F  such 

that [[a,h,-h, II >_-e IIh, II. Thus, IIh, II = < e - I  IIf~(a,)U for some aidE. 
H e n c e  E II h~ II 2 =<_ e - 2 ~ , ~ e  II f(a) II 2 < ~ .  Therefore h = ~h~ defines an 
element of  V2(M) with f (a)= ah - h  for all a EF.  It suffices to show that 
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h E V(M), and hence by the remarks above that Y. [[ Akhi II 2 <  ~ for all k. 
However, since A commutes with F, we have AkfEZI(F, V(M)), Akf= 7_,A~, 
where A ~  E V~, and A~/(a) = aAkhi - Akh~. Repeating the above argument for 
Akh~ yields the required assertion. 

The argument for the module C®(M) is similar. 
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